Project View of Risk (Typical) ## Project View of Risk (Post Columbian) ## **Planning for Risk** | | | [1] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | |--------------------|------------------------------|---|--------------------------------------| | p(x _i) | Risk (x _i) | Consequence c(x _i) | p(x _i)c(x _i) | | 0.35 | Electronic Parts
Problem | 6 mos. Schedule slip
on critical path
(\$30M) | \$10.5 | | 0.7 | Test Failures | 3 mos. Schedule slip
(\$15M) | \$10.5 | | 0.25 | Partner Issues | Cost overrun (\$5M) | \$1.2 | | 0.15 | Inadequate Cost
Estimates | Cost overrun (\$123M) | \$18.5 | | | | TOTAL | \$40.7 | Reserve = $\Sigma p(x_i)c(x_i)$ #### **Managing Risk** #### GP-B 5x5 Risk Summary From 10/11/2002 to 04/10/2003 (Top 15 Risks) # 4th Dimension of Risk ### Spectrum of Environmental Influences on Risk Political/Budget **Policy** **Strategy** **Architecture** **Culture** **Functional** # Political/Budgetary Influence on Risk Political/Budget **Policy** **Strategy** **Architecture** **Culture** **Functional** ## Architectural Influence on Risk Political/Budget **Policy** **Strategy** **Architecture** **Culture** **Functional** # **EELV-centered Architecture** ## **ESAS Architecture** CLV MLP CEV